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MAKINGSTATISTICALINFERENCESABOUT

SOFTWARERELIABILITY

by

DouElas R. Miller

I. Introduction

This paper presents some aspects of the statistical analysis of

software reliability. The purpose is to point out some open problems

and difficulties in the area, rather than to present solutions or new

methods. This will be done first by considering moderate levels of

reliability and a class of models (Exponential Order Statistic models)

that appear to be useful. These moderate levels of reliability are

characterized by the feasibility of testing for time durations that are

at least an order of magnitude longer than desired mean times between

failures. The second and primary concern of this paper is ultrahigh

reliability, such as that occurring when failure rates are below one in

one billion; for example, when failures occur at the rate of one per one

billion missions, or one per one billion instances of using a program,

or once per one billion units of operating time. In this case it is

usually infeasible to test for a time duration even approaching the

desired mean time between failures. Furthermore, it may be impossible

to develop testing procedures which are sufficiently representative of

field usage. It is highly questionable whether the statistical analyses

useful at moderate levels of reliability are of any use here. Indeed,
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it is unclear what role statistical methods can play in the verification

of such ultrareliable software.

Whena piece of software is put in service to perform some

function, it mayor maynot perform as desired. If it has been

carefully and skillfully developed, it will probably work as desired

most of the time; however, it may occasionally not perform as required.

A priori, there is uncertainty about how well it will perform. One

approach is to model this uncertainty using probability theory and use

statistical methods to make inferences about it. We would like to be

able to translate everything we know about the software into estimates

of how the software performs in the field. There is actually a vast

amount of information available and fairly detailed aspects of

performance which are of interest. For purposes of statistical

reliability analysis, most information is ignored and the performance

measure is often reduced to a failure rate. The statistical problem

becomes one of estimating future failure rate from observed failures

(which could have occurred during development, debugging, testing, or

field usage). This is a highly simplified model of the situation, but

it is still statistically rich and useful for situations in which

sufficient data, i.e., failure data, can be collected.

2. A Model for Software Failure

Let us consider a model of software bugs and usage that will lead

to observed failure times that are order statistics of independent,

nonidentically distributed exponential random variables. We assume that

the software operates by receiving data from some input space and

transforming them into output data, which are either correct or
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incorrect. This is done for a sequence of inputs selected randomly and

independently from the space of all possible inputs according to some

distribution over the input space. We assume that the internal state of

the computer is identical for each input. If a subset, F, of the input

space corresponds to inputs for which a certain bug in the software

causes an incorrect output and the input distribution gives probability

p to F, then in the above scenario this bug will have geometrically

distributed interfailure times with mean i/p. If p is small the

interfailure time distribution can be approximated by an exponential

distribution. If a bug is removed (perfect fix) when it manifests

itself in an incorrect output, then we see a single exponentially

distributed waiting time until manifestation. We further assume that

the probability of simultaneous occurrence of more than one bug on any

input is negligible; this allows us to model the separate manifestation

times as independent continuous random variables. To summmarize: the

Exponential Order Statistic (EOS) model can be described as follows. Let

0 _ T _ T _ T _ ... _ T _ ...
x 2 3 j

be random variables corresponding to manifestation times of bugs in a

piece of software. Each bug has a failure rate associated with it; if

the bugs are arbitrarily indexed, then k. is the failure rate of the
x

ith bug. Let X i equal the occurrence time of the ith bug:

P[X. > t] = exp(-X.t).
1 1

The random variables [Xi, i = 1,2,3,...} are independent and their

order statistics can be denoted as {Tj, j = 1,2,3,...}. See Miller [7]

and Scholz [II] for more information about EOS models.

It is important to consider the assumptions made by the EOS



model:

(i)

(ii)

(iii)

(iv)

Successive inputs are independently drawn from a single usage

distribution, i.e., independent and identically distributed

(i.i.d.) inputs.

Internal machine state is identical for each input.

Bug fixes are perfect.

There is no bug interaction.

It is equally important to note the absence of any assumptions about the

failure rates

k I, k2, k3, ..., ki, ....

They can be any finite set of values, or any infinite set of values for

which

_o

_= k <_.i I i

There are some properties and special cases of EOS models that

are of interest. If the rates (k. 's) are chosen randomly from some
I

distribution or as realizations of some nonhomogeneous Poisson process

(NHPP), we get the family of doubly stochastic EOS models. This family

of models is of special interest because of its richness--it contains

all failure occurrence processes which are nonhomogeneous Poisson

processes with completely monotone intensity functions. Many of the

well-known parametric families of reliability growth models can be

obtained in this way. For example, the Musa-Okumoto [8] model is a

doubly stochastic EOS model with k's from an NHPP with intensity

m(k) = yk-lexp(-_k).

In a certain sense this is a noisy version of Nagel's [9,10] log-linear

failure rate model, where
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i

= 6_ , i = 1,2,3, ....

Consequently, assuming a parametric model often may be tantamount to

assuming a particular pattern or distribution of the bug failure rates;

for example, the Jelinski-Moranda [5] model assumes they are all

identical. When viewed in this light it seems hard to imagine that

there could be one pattern (or a few) of failure rate distribution which

always arises to the exclusion of all others• It would make the

inference much easier if it were true. If it is not true, it can cause

severe estimation errors when one is trying to predict reliability,

especially in the ultrareliable case.

Nagel's log-linear model is thought by some to be a possible

candidate for a special prevalent pattern; but that would require much

more justification. One problem is that the pattern is not closed under

superposition, which would seem a desirable property inasmuch as it

represents the combining of two programs into one. Suppose a software

system consists of two modules, A and B, each of which is executed once

for each application of the program. If the log-linear model were a

universal model, then it would apply to both modules separately and to

A B Bthe system as a whole. Let AA = [k , k2, ...] and AB = [kl, k 2 .... ]

be the failure rates per application of the bugs in module A and module B,

k9respectively. If = 6A(eA )I and = 6B(=B )i i = 1,2,3 .... then itk?
1 1 ' '

can be shown that the failure rates of the bugs in the system,

AS = AA U AB, do not in general exhibit a log-linear pattern.

It is useful to consider inference within the context of these

Exponential Order Statistic models because it makes certain difficulties

very apparent. In a sense the EOS models provide one possible
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"best-case situation." Because many of the parametric models are

special cases of EOS models, the same difficulties almost certainly

apply to them. Some of the problems are:

(i) In order to make inferences about how the software will perform

in the field, we must know the input domain as well as the input

distribution that will be encountered.

(ii) The i.i.d, input assumptions for successive executions might be

appropriate to certain batch types of application programs, but

not to other software such as systems software or real time

control software.

(iii) These models gloss over the problems of identification of

separate bugs, imperfect fixes, dependencies between bugs and

other factors which tend to make for messy data.

(iv) The richness of the possible models and some undesirable

properties of completely monotone functions make accurate

prediction difficult. (See Figure 4 and the accompanying

discussion.)

3. Reliability Prediction

The prediction problem is of special interest for software

maintenance. An estimate of the number of new bugs that will appear

during some future time interval can be useful in planning. Using the

EOS paradigm we see that this is a difficult problem because two

completely monotone intensities can agree quite closely over a finite

interval and then diverge over a future interval. They may agree

closely enough that it is impossible to say which one best fits the

data. This is illustrated by a sequence of figures: Figure 1 shows
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somefailure data, the cumulative number of bugs manifested by time t,

0 _ t _ 100. Figure 2 shows two possible models; the straight line is

M(t) = t/2

and the curved line is

M(t) = 47 log(.01t + l)/log 2.

These can represent the expected number of occurrences in NHPPs; the

first is actually a homogeneous Poisson process (HPP) and the second is

a case of the Musa-Okumoto model. The HPP is a limiting case of the EOS

paradigm; the M-O model is an actual case of a doubly stochastic EOS

model. Thus if one believes the EO$ paradigm, both of these models must

be considered. In Figure 3 the data are superimposed on the two mean

functions. The point of Figure 3 is that the noise in the data is of

the same or greater magnitude as the difference between the two models.

Both models would probably pass hypothesis tests as the true model.

Figure 4 shows the models extrapolated into the future. The two models

differ by a factor of approximately two in the expected number of events

in the interval [100,200]. This sequence of figures conveys a feeling

for the randomness and the possible imprecision that arise when the

number of future bugs is predicted from the occurrence times of previous

bugs. The data were generated on a hand calculator from the HPP with

M(t) = t/2. It seems that there are definite limitations to the

inferences that can be made in the absence of additional inform_ation

that will restrict the family of admissible models.

Reliability growth models have been used successfully in eases

with moderate levels of reliability. For example, Currit, Dyer, and

Mills [I] successfully use such models for a system in which they cite

failure rates very roughly in the neighborhood of one failure per 5000
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test cases. However, obtaining ultrahigh reliability through

reliability growth requires very long testing. Bey Littlewood has

observed the following interesting phenomenon, which the reader may

check for himself: For the data used by Musa and Okumoto [8], the

current reliability (as measured by the current time between failures)

is at best in the neighborhood of I/i00 of the total accumulated test

time and for higher reliability it could be less than I/I000. These

types of data, in which a fair number of failures is observed and the

program is not ultrareliable, seems to be the appropriate domain for

using statistical software reliability models. There may be value in

getting estimates that are not extremely precise or in which we do not

have an extremely high level of confidence. To this end probability

models with incorrect assumptions can be used; the resulting

approximations are acceptable and useful.

The general problem addressed above is to make inferences about

future performance based on past performance of the software and any

additional information. There are many open problems in modelling and

inference with reliability growth data. Three main performance measures

of interest are current reliability, expected number of bugs to be

discovered over a future time interval, and additional debugging time to

reach a desired level of reliability. In making inferences about these

quantities, some open problems are:

(i) Determining accuracy of point estimates, perhaps by using

confidence intervals.

(ii) Incorporating more information into inference procedures.

(iii) Finding ways to justify restricted classes of reliability growth

models.
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(iv) Correcting for uncertainty in the field usage distribution.

(v) Considering different sampling schemes, e.g., replicated

debugging runs.

(vi) Quantifying the limitations of a purely statistical inference

approach.

(vii) Handling imperfect fixes.

(viii) Distinguishing whether problems with accuracy are arising from

bad models or from good models that have bad inference

characteristics.

There is definitely a need for more sophisticated statistical

techniques. They can be very useful as management tools. There seems

to be opportunity for the mathematical statistical community to

contribute more to this area. Correct and precise statistical analysis

seems especially important for software which must be ultrareliable for

safety reasons; but this may be an inherently different problem than the

usual software reliability growth scenario, which addresses moderate

levels of reliability.

4. Analysis of Ultrareliable Software

Software used in real-time control of safety-critical systems

must be ultrareliable. The software in digital flight control computers

aboard commercial aircraft will be critical to flight safety.

Reliability on the order of 10 -9 failures per hour or per mission is

desired. Even trying to quantify such high reliability with statistical

parameter values is very difficult and may be meaningless. The Radio

Technical Commission for Aeronautics refrained from quantifying the

reliability; in "Software Considerations in Airborne Systems and
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Equipment Certification," DO-178A, they say:

"During the preparation of this document, techniques for estimating

the post-verification probabilities of software errors were

examined. The objective was to develop numeci_al requirements for

such probabilities for digital computer-based equipment and systems

certification. The conclusion reached, however, was that currently

available methods do not yield results in which confidence can be

placed to the level required for this purpose. Accordingly, this

document does not state post-verification software error requirements

in these terms."

In Advisory Circular No. 25.1309-1 the FAA uses the value 10 -9 to

characterize "extremely improbable." Such events would be unlikely to

occur during the entire lifetime of a fleet of aircraft. To see some

rationale for this number, consider the following rough calculation: A

single plane with a 30-year lifetime flies approximately 104 days, at

most I0 hours per day. So a fleet of 103 planes would accumulate at

most 108 flisht hours. We would expect 0.I0 occurrences of an event

with 10 -9 probability durin_ this time. The Poisson distribution is a

good model for such rare events; so the probability of no occurrences is

exp(-O.lO) = .90, which is somewhat unlikely.

In theory, statistical verification of any level of reliability

is possible. In practice, we encounter at least three major

difficulties: the usage distribution used in testing may not perfectly

fit the usage distribution encountered in the field; fixes may be

imperfect; test time may be limited. The usage distribution is a severe

problem: it may be desirable to bias the test distribution to go after

bugs which the tester thinks are more likely to be in the software, but
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perfect knowledge of the field usage distribution is needed to remove

this bias in estimating the reliability. The problem of imperfect fixes

can be avoided by considering the software to be completely new after

each fix and thus not trying to base inferences about failure rate on

previous versions. Furthermore it is unlikely that bugs would be

allowed to remain in the program after they have been detected, so each

version would be tested until it fails; then it becomes a new version.

So an estimate of reliability would be based on failure-free tests. In

order to have any degree of confidence that the failure rate is less

than 10 -9 failures/hour, it is necessary to test for more than 109 hours

and experience no failures.

Confidence intervals for failure probabilities based on

error-free testing can be derived as follows. Let p denote the unknown

probability of failure on a given randomly chosen test case. Suppose n

test cases are run with no failure observed. In general, when n is

large and p is small, the number of failures will be a random variable,

X, with a Poisson distribution with mean _ = np:

P(X = x) = e _ /x! , x = 0,1,2, ....

Thus we have observed data to which this model assigns probability

-_ -np
P(X = 0) = e = e

The values of p for which these data are not statistically significant

at level e are those satisfying

-np
_ P(X = O) = e

or

p _ -loge/n ,

which constitutes a I00(I-_)% confidence interval for p, if n test cases
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intervals are:
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For various confidence levels the confidence

Confidence Level Confidence Interval

95% p < 3.00/n

99% p < 4.61/n

99.9% p < 6.91/n

99.99% p < 9.21/n

99.999% p < ll.51/n

For example, to be 99% confident that the failure probability is less

than 10 -9 requires 4.6 x 109 test eases without failure. If th_ unit of

time is hours, this equals 525,000 years. (A more simplistic approach

of 109 failure free hours is still equal to 114,000 years of testing.)

A side issue is that the software would have to be much more reliable

than 10 -9 in order to survive 4.6 x 109 test cases without failing.

Thus, infeasibly long testing times are necessary to verify high

reliability and they probably would not work anyway because knowing the

field input distribution precisely enough is a problem.

5. Bayesian Analysis

A Bayesian analysis of the reliabililty of software is attractive

because it provides a way to incorporate more information into the

inference. There is a lot of information available in addition to

failure data during a software analysis. For example, if the software

has been subjected to formal correctness-proving and has survived, this

would improve perceived reliability while not guaranteeing perfection.
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All this information could be incorporated into a prior distribution on

the failure rate of the program. However, this only allows escape from

huge samples when the software is acceptable a priori. The following

example illustrates this: Suppose we assume the prior

P(failure rate = 0) = .99

P(failure rate = 10 -6 ) = .01.

The prior mean is 10 -8 which is close to 10 -9 but not quite acceptable.

(Whether the mean is the appropriate measure is another question.)

Previously we showed that we wanted an event to be unlikely during 108

time units. Consider n test cases without a failure, then

-6 8 8
n P(f.r. = I0 {Data) E(events in i0 ) P(O events in I0 )

0 .010

5
I0

i .368

.00906 .9 .407

.00370 .37 .691

.00000046 .000046 .99995

6
I0

7
I0

We see that it is necessary to have a sample that is larger than the

MTBF (lO 6 executions, in this case) of the bug which may only be present

with .01 probability. This illustrates what appears to be a general

property of the Bayesian approach: If the software is considered good

enough a priori, no data are needed. If the software is good enough but

the a priori feeling is that it is not quite good enough, then a large

sample is needed. Such an extreme prior as given here also might not be

viewed as credible.

In the above two analyses, a difficulty arises from the two-stage

aspect of this problem. The first stage is whether a bug is present.
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The second stage is whether the bug manifests itself.

Bayesian prior distribution we have two possibilities:

In the above

a perfect

program, or a flawed program which we can expect to fail I00 times

during the lifetime of the design. If this second possibility occurs,

the design will have to be modified, perhaps bankrupting the designer;

this has probability .01. It is not clear that the mean of the prior

plays a very significant role. A similar two stake feature occurs in

the previous confidence interval approach: in this case it can be

described in terms of "process" versus "product." The confidence level

describes a property of the process of producing or testing software.

To say we are 99% confident of having a good piece of software (one with

failure rate 10 -9 ) sounds rather strange. So with these very high

reliabilities, there seem to be some questions of interpretation of

inference statements.

6. Analysis of Fault-Tolerant Software

There are two aspects of high reliability for safety-critical

applications: achievement and verification. Fault tolerance has been

used successfully to achieve very high levels of reliability; see the

recent Proceedings of the International Symposium on Fault-Tolerant

Computing [2]. One approach to software fault tolerance is n-version

software. This allows for higher system design reliablity than that of

individual components. Thus if higher software reliability is sought by

using n-version programming, we should also be able to exploit this fact

in making reliability verification. However, we encounter the problem

that separate software components do not a priori fail independently (as

can be assumed in hardware models). Eckhardt and Lee [3] have shown
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theoretically why independence fails and Knight and Leveson [6] have

shown experimentally that programs which are independently created will

show dependencies in failing.

Consider a two-out-of-three software system in which three

independently created versions of the software perform the same

computational tasks and then use a flawless majority voter. Let FS

denote system failure and F. denote failure of the ith component,
1

i = 1,2,3; then

P(F ) : P(F N F ) + P(F A F ) + P(F (] F )
S I 2 I 3 2 3

- 2P(F N F A F )
i 2 3

This may be manipulated into an equivalent expression:

P(F ) = P(F )P(F ) + P(F )P(F ) + P(F )P(F )
S I 2 I 3 2 3

- 2P(F )P(F )P(F )
I 2 3

+ (P(F O F ) - P(F )P(F )) + (P(F O F ) - P(F )P(F ))
I 2 I 2 I 3 I 3

+ (P(F A F ) - P(F )P(F ))
2 3 2 3

- 2(P(F O F N F ) - P(F )P(F )P(F ))
i 2 3 I 2 3

In the second expression for P(F S) the last four terms are covariances

which disappear if the three versions fail independently of one

another. (The interpretation of these terms as "covariances" can be

seen by considering the random variables Xl, X 2, and X 3, where X.1 = I if

= 0 otherwise. By definition CoV(Xl,X 2)component i fails and X i

= E(XIK 2 - EXIEK 2) = EXIX 2 - EXIEX 2 = P(XIX 2 = I) - P(X 1 = l)P(X 2 = i)

= P(F 1 A F2) - P(FI)P(F2).) If independence cannot be assumed these

covariance terms must be estimated or bounded in some way. The

difficulty is that in order for the three-version system to be a
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significant improvementover the one-version system, the covariance

terms must be very close to zero and this must be verified in order to

verify the system reliability. So wemust verify that

-9
P(F N F ) < I0

i j

Hence we are back to the original problem which requires a huge sample,

accurate knowledge of the usage domain and distribution, and so on. Any

statistical approach that claims to support ultrareliability based on a

moderate amount of data is almost certainly based on assumptions;

verification of these assumptions would require a huge amount of data.

7. Conclusion

It is difficult to prove something is impossible, but the

evidence suggests that a formal statistical verification of reliability

will be impossible for various safety critical systems. The best

software development and evaluation techniques will be used and huge

amounts of documentation, as well as extensive testing, will be required

for certification. But it is unlikely that this can be formed into a

statistically rigorous verification. It is also fairly certain that

such systems will be built. On the other hand, systems (such as

bridges) have been built which turned out to be ultrareliable

posteriori. The initial verification seems more elusive than the

achievement of ultrareliability.
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